Reactions of (*E*)-O-Arylbenzaldoximes with Secondary Amines in Acetonitrile. Effect of β -Aryl Substituents upon the Competition between E2 and S_NAr Reactions

Bong Rae Cho* and Jong Tae Je

Department of Chemistry, Korea University, 1-Anamdong, Seoul 136-701, Korea

Received May 4, 1993[®]

Reactions of (E)-O-arylbenzaldoximes in which the O-aryl group is 2,4-dinitrophenyl (1a-d) and picryl (2a-d) with secondary amines in acetonitrile have been studied kinetically. The reactions proceeded via competing E2 and S_NAr mechanisms. For eliminations from 1a-d promoted by R_2NH in MeCN, the transition state was changed toward E1cb-like by a more electron-withdrawing β -aryl substituent and a stronger base. On the other hand, the transition states for eliminations from 2a-d and for the S_NAr reactions of all substrates were relatively insensitive to the variation of either β -aryl substituent or base strength. The yield of S_NAr product increased with base concentration, electronwithdrawing ability of the O-aryl group, and base strength. When the electron-withdrawing ability of the β -aryl substituent is increased, the yield of S_NAr product from 1a-d decreased, although no clear trend was observed for 2a-d. From these results, factors that influence the competition between E2 and S_NAr reaction pathways are assessed.

Recently, we reported that the reactions of (E)-Oarylbenzaldoximes 1 and 2 with secondary amines in acetonitrile proceeded by competing E2 and S_NAr mechanism.¹ The second rate-determining step of the S_NAr reactions involved both uncatalyzed and base-catalyzed pathways. The yield of the S_NAr product increased with base concentration, electron-withdrawing ability of the O-aryl group, and base strength. However, the effect of β -aryl substituent upon the competition between these two reactions has not been investigated. An electronwithdrawing β -aryl substituent is expected to increase both the acidity of the C_{β} -H bond and the leaving ability of the oximate anion to enhance the rates of the both processes. Since the β -aryl substituent is closer to the C_{β}-H bond than to the O-Ar bond, the E2 reaction is expected to be more strongly influenced by the inductive effect of the substituent. On the other hand, the S_NAr reaction could be more sensitive to the resonance effect of the β -aryl substituent because the developing negative charge on the oxygen atom of the oximate leaving group may be stabilized by resonance, whereas that on the β -carbon cannot be because the C_{β}-H bond is orthogonal to the π -orbitals of β -aryl ring. To assess the relative importance of these two factors upon the competition between these two reactions we have investigated the reactions of (E)-Oarylbenzaldoximes with secondary amines in acetonitrile (eq 1).

XC ₆ H ₄ C=N + R H OAr	₂NH ──► XC₅H₄C≡	=N +	- XC6H4CH=N	$OH + ArO' + R_2 NAr (1)$
	Ar		x	R₂NH
1	2,4-dinitrophenyl	a	н	pyrrolidine
2	picryl	Ъ	p-MeO	piperidine
		c	m-Br	tetrahydroisoquinoline
		d	p-NO ₂	morpholine

Abstract published in Advance ACS Abstracts, October 1, 1993.
 (1) Cho, B. R.; Min, B. K.; Lee, C. W.; Je, J. T. J. Org. Chem. 1991, 56, 5513.

Results

(E)-O-Arylbenzaldoximes 1a-d and 2a-d were synthesized,¹⁻⁴ and the rates of reactions with R₂NH in MeCN were determined as reported previously.¹ The observed rate constants were multiplied by the yields of the S_NAr and elimination products to determine the observed rate constants, k_{obs}^{S} and k_{obs}^{E} , for the respective processes. The k^{S} and k_{2}^{E} values were calculated by dividing the k_{obs}^{S} and k_{obs}^{E} values by base concentration. The rate constants are summarized in Tables SI-SX in the supplementary material.

Bronsted plots for eliminations from 1a-d and 2a-dpromoted by R₂NH in MeCN gave straight lines with excellent correlation (plots not shown). For eliminations from 1a-d, the value increases from 0.58 to 0.68 as the electron-withdrawing ability of the β -aryl substituent increases. However, no clear trend is observed for the reactions of 2a-d (Table I). The β_{lg} values were calculated from the rate constants for piperidine-promoted eliminations from 1a-d and 2a-d and the pK_{lg} values of aryl oxides.⁵ The $|\beta_{lg}|$ value decreases with increased electronwithdrawing ability of the β -aryl substituent (Table I).

The influence of the β -aryl substituent upon the elimination rates correlated satisfactorily with the Hammett equation with σ values (plots not shown). The Hammett ρ values are listed in Table II. For eliminations from 1a-d, the values increase from 1.0 to 1.3 with stronger base, although no clear trend is observed for 2a-d.

The influence of the leaving group upon the elimination reaction is summarized in Table III. The rate increased by 1.6×10^3 fold, Hammett ρ decreased from 1.2 to 0.57, and Bronsted β decreased from 0.61 to 0.54 as the leaving group was improved from 2,4-dinitrophenoxide to picrate.

For the S_NAr reactions of 2a-d with R_2NH in MeCN, plots of $k^S vs$ base concentration gave straight lines (plots not shown). On the other hand, the k^S values for 1a-d

© 1993 American Chemical Society

⁽²⁾ Cho, B. R.; Lee, J. C.; Cho, N. S.; Kim, K. D. J. Chem. Soc. Perkin Trans. 2 1989, 489.

⁽³⁾ Cho, B. R.; Kim, K. D.; Lee, J. C.; Cho, N. S. J. Am. Chem. Soc. 1988, 110, 6145.

 ⁽⁴⁾ Cho, B. R.; Jung, J.; Ahn, E. K. J. Am. Chem. Soc. 1992, 114, 3425.
 (5) Coetzee, J. F. Prog. Phys. Org. Chem. 1965, 4, 45.

Table I. Effect of Aryl Substituent upon Bronsted β and β_{1g} Values for Eliminations from (E)-XC₆H₄CH=NOAr Promoted by R₂NH in MeCN at 25.0 °C

	β value		
	Ar = 2,4-dinitrophenyl	Ar = picryl	$ \beta_{lg} ^a$
p-NO ₂	0.68 ± 0.03	0.57 ± 0.06	0.56
m-Br	0.61 ± 0.04	0.60 ± 0.07	0.63
н	0.61 ± 0.05	0.54 单 0.04	0.64
p-CH₃O	0.58 ± 0.05	0.56 🛳 0.06	0.70

^a The base was piperidine.

Table II. Effect of Base Strength upon Hammett ρ Values for Eliminations from (E)-XC₆H₄CH=NOAr Promoted by R₂NH in MeCN at 25.0 °C

		ρ value	
	pKaª	Ar = 2,4-dinitrophenyl	Ar = picryl
pyrrolidine	19.6	1.3 ± 0.1	0.51 ± 0.06
piperidine	18.9	$1.2 \oplus 0.1$	0.57 单 0.08
tetrahydroisoquinoline	17.1	1.0 ± 0.1	0.46 ± 0.06
morpholine	16.6	1.0 🛳 0.1	0.46 ± 0.07

^a Reference 5.

Table III. Transition-State Parameters for Eliminations from (E)-XC₆H₄CH=NOAr Promoted by Piperidine in MeCN

	Ar = 2,4-dinitrophenyl	Ar = picryl
pKa ^a	16.0	11.0
rel rate	1	$1.6 imes 10^{3}$
ρ	1.2 ± 0.1	0.57 ± 0.08
β	0.61 ± 0.05	0.54 ± 0.01

^a Reference 5.

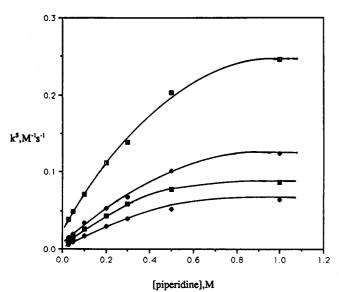


Figure 1. Plots of $k_A vs$ base concentration for S_NAr Reactions of (E)-XC₆H₄CH—NOC₆H₄-2,4- $(NO_2)_2$ with piperidine in MeCN $(X = p-NO_2 (\Box), m$ -Br $(\blacklozenge), H (\blacksquare), p$ -CH₃O (\diamondsuit) .

showed a curvelinear relationship with the base concentration (Figure 1). The result is attributed to both the change in rate-determining step and the solvent effect (vide infra). Therefore, the $k^{\rm S}$ values determined at [R₂-NH] <0.20 M were used in the kinetic analysis.

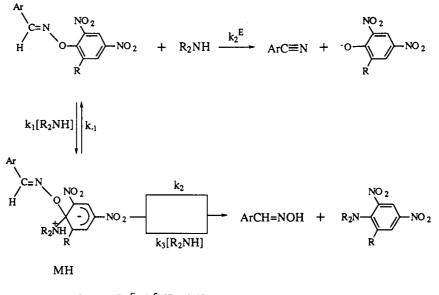
Plots of log $k^{\rm S}$ vs pK_a values of the base gave straight lines (plots not shown). Since the $k^{\rm S}$ value is a function of base concentrations (Scheme I), the values at base concentrations of 1.00×10^{-1} and 1.00×10^{-3} M for 1a-d and 2a-d, respectively, were used in the plot. The Bronsted plots showed excellent correlation (plots not shown). The β values are very close to 1.0 for all of the reactions (Table IV). The rates of the S_NAr reactions correlated satisfactorily with the Hammett equation utilizing σ values. The Hammett ρ values are in the range of 0.43-0.68 and show no clear trend with the change in either base or *O*-aryl substituent (Table V).

Yields of S_NAr and E2 products for the reactions of 1a-d and 2a-d with R_2NH in MeCN were determined at various base concentrations by comparing the absorption of the reaction products with those for authentic samples of the products. The yields of S_NAr product increased with base concentration, electron-withdrawing ability of O-aryl substituent, and base strength. For reactions of 1a-d, the yield decreased with more electron-withdrawing β -aryl substituent, although no such trend is observed for 2a-d. The results are summarized in Tables VI and VII.

Discussion

Mechanism and Transition State Structure for the Elimination Reactions. Earlier it was established that the reactions of 1a and 2a with secondary amines produce the elimination products via an E2 mechanism.¹ The transition-state parameters for R₂NH-promoted eliminations from 1 reveal that the effects of aryl substituents, base strength, and leaving group variations upon the nitrile-forming transition state are very similar to those observed for R₃N-promoted eliminations from the same substrate.³ For eliminations from 1 promoted by R₂NH in MeCN, Bronsted β increases and $|\beta_{lg}|$ decreases with the enhancement of the electron-withdrawing ability of the β -aryl substituent (Table I). This indicates an increase in the C_{β} -H bond cleavage, a significant decrease in the N_{α} -OAr bond rupture, and a shift of the transition state toward the E1cb corner in the reaction coordinate diagram.6

Similarly, the Hammett ρ values increase slightly as the base strength becomes stronger (Table II), indicating a gradual increase in the transition-state carbanionic character with a stronger base. The result is consistent with a shift of the transition state toward the reactant and the E1cb corner in the reaction coordinate diagram.⁶


When the leaving group was changed from 2,4-dinitrophenoxide to picrate, the rate increased by 1.6×10^3 -fold and both Hammett ρ and Bronsted β values decreased (Table III). The result can also be interpreted with the reaction coordinate diagram in terms of a shift of the transition state toward the reactant and the E1 corner.⁶ Very recently we proposed that the More O'Ferrall-Jencks diagram may be successfully employed for reactions with reactivity difference of 3000-fold when the structures of the transition states are closely related.⁷ The present result provides an additional example in support of our previous conclusion.

For R₂NH-promoted eliminations from 2, both Hammett ρ and β values remained nearly the same with the variation of the β -aryl substituent and the base. The much lower sensitivity of the transition states for eliminations from 2 to the variations of reactant structures apparently results from the much higher reactivity.

Mechanism and Structure-Reactivity Relationship for the S_NAr Reactions. In previous work it has been established that the reactions of 1a and 2a with secondary amines in MeCN proceed by an addition-elimination

⁽⁶⁾ Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry; Harper & Row: New York, 1987; pp 199-205.
(7) Cho, B. R.; Jang, W. J.; Je, J. T.; Bartsch, R. A. J. Org. Chem. 1993, 58, 3901.

Scheme I

$$k_{obs} = (k_2^{L} + k^{3})[R_2NH]$$

 $k^{S} = (k_1k_2 + k_1k_3[R_2NH])/(k_1 + k_2 + k_3[R_2NH])$

Table IV.	Bronsted #	Values	for S _N A	r from
(<i>E</i>)-XC ₆ H ₄ CH=	-NOAr Pro	omoted b	y R ₂ NH	in MeCN

	β value		
	Ar = 2,4-dinitrophenyl ^a	$Ar = picryl^b$	
p-NO ₂	0.92 ± 0.11	1.0 • 0.13	
m-Br	0.97 ± 0.12	0.98 • 0.14	
н	0.98 🔿 0.11	1.1 单 0.10	
p-CH ₃ O	0.97 ± 0.12	1.0 ± 0.13	

 a Base concentration was 1.00 \times 10 $^{-1}$ M. b Base concentration was 1.00 \times 10 $^{-3}$ M.

Table V. Hammett ρ Values for S_NAr from (*E*)-XC₆H₄CH=NOAr Promoted by R₂NH in MeCN

	ρ value	
	Ar = 2,4-dinitrophenyl ^a	$Ar = picryl^b$
pyrrolidine	0.43 ± 0.03	0.53 ± 0.08
piperidine	0.51 ± 0.05	0.49 ± 0.09
tetrahydroisoquinoline	0.68 ± 0.10	0.59 ± 0.04
morpholine	0.53 🛳 0.02	0.63 🌨 0.15

 a Base concentration was 1.00 \times 10⁻¹ M. b Base concentration was 1.00 \times 10⁻³ M.

mechanism in which the second step is rate determining (Scheme I). For all reactions, the $k^{\rm S}$ values increased linearly with base concentration at [R₂NH] <0.20 M. This result indicates that $k_{-1} \gg k_2 + k_3$ [R₂NH] and the $k^{\rm S}$ expression in Scheme I can be simplified to $k^{\rm S} = (k_1k_2 + k_1k_3[{\rm R}_2{\rm NH}])/k_{-1}$. Therefore, all of the reactions surveyed in the present study must proceed by the same additionelimination mechanism in this base concentration range.

On the other hand, the k^8 values for the reactions of **1a-d** showed curvelinear relationship at higher base concentration (Figure 1). The result can be attributed to both the change in rate-determining step and the solvent effect. For reaction of **1a** with piperidine, the $k_1k_3/k_{-1} = 0.24 \text{ M}^{-2} \text{ s}^{-1}$ and $k_1k_2/k_{-1} = 0.0019 \text{ M}^{-1} \text{ s}^{-1}$ were obtained from the slope and the intercept of the linear portion of the plot at [R₂NH] <0.20 M. If one assumes that the curvelinear plot is obtained because the first step becomes rate determining at [piperidine] = 1.0 M, then $k^8 = 0.087 \text{ M}^{-1} \text{ s}^{-1}$ determined at this base concentration should equal to k_1 (Figure 1). Utilizing $k_1 = 0.087 \text{ M}^{-1} \text{ s}^{-1}$, [R₂NH] = 1.0 M, $k_1k_3/k_{-1} = 0.24 \text{ M}^{-2} \text{ s}^{-1}$, and $k_1k_2/k_{-1} = 0.0019 \text{ M}^{-1}$

Table VI. Yields of S_NAr Product for Reactions of (E)-XC₆H₄CH=NOC₆H₄-2,4-(NO₂)₂ with R₂NH in MeCN

		$\%$ yield of $\mathbf{S_NAr}$ product when the base is			
[R ₂ NH],M	x	pyrrol- idine	piper- idine	tetrahydro- isoquinoline	morpho- line
0.20	p-NO ₂		62	36	33
	m-Br		66	48	57
	н		82	53	62
	p-CH ₃ O		92	62	77
0.10	p-NO ₂	73	51	33	31
	m-Br	85	63	35	42
	н	89	77	51	48
	p-CH₃O	89	84	58	67
0.05	$p-NO_2$	69	43	31	23
	m-Br	82	51	32	28
	н	87	64	36	32
	p-CH₃O	88	73	43	48
0.03	p-NO ₂	62	39	27	18
	m-Br	78	48	24	18
	н	83	53	24	23
	<i>p</i> -CH ₃ O	85	64	32	36

 s^{-1} , $(k_2 + k_3[R_2NH])/k_{-1} = 2.8$ is calculated. This does not satisfy $k_2 + k_3[R_2NH] \gg k_{-1}$ required for the change in rate-determining step but indicates that both steps are partially involved in the rate-determining step.⁸⁻¹¹ Moreover, the reactivity of the amines in MeCN should decrease with increased amine concentration due to the hydrogen bonding ability of the amines.⁵ Therefore, it seems reasonable to assume that the curvelinear relationship is observed due to both the change in rate-determining step and the solvent effect.

The slope of the plots of log $k^{\rm S}$ vs $pK_{\rm a}$ of the bases for the S_NAr reactions are summarized in Table IV. The β values are very close to 1.0 for reactions of both **1a-d** and **2a-d**, indicating that the nucleophile-carbon bonds are

⁽⁸⁾ Miller, J. Aromatic Nucleophilic Substitution; Elsevier: New York, 1968.
(9) Bernasconi, C. F. Acc. Chem. Res. 1978, 11, 147.

⁽¹⁰⁾ Bacaloglu, R.; Bunton, C. A.; Orgeta, F. J. Am. Chem. Soc. 1988,

 <sup>110, 3495.
 (11)</sup> Jain, A. K.; Kumar, A.; Sarma, K. N. J. Chem. Soc., Perkin Trans
 2 1989. 153.

Table VII.	Yields of S _N Ar Product for Reactions of	
(<i>E</i>)-XC	6H4CH-NOPic with R2NH in MeCN	

	% yield of S _N Ar product when the base is				
10 ² [R ₂ NH], M	x	pyrrol- idine	piper- idine	tetrahydro- isoquinoline	morpho- line
3.00	p-NO ₂ m-Br H p-CH ₃ O			83 88 83 87	96 98 92 99
0.50	p-NO2 m-Br H p-CH3O			51 53 50 46	76 77 66 78
0.10	p-NO2 m-Br H p-CH3O	100 87 85 85	51 49 48 39	19 19 20 13	40 49 24 34
0.05	p-NO2 m-Br H p-CH3O	89 82 73 59	39 41 44 36		
		Sche	me II		
MH + R	2NH	fast equilibrium		$M^- + R_2 \dot{N} H_2$	
slow	Ar C= H R ₂ NH	= N NO H R ₂ NH R	2 		Products

completely formed in these transition states.¹² Thus, the transition states for the S_NAr reactions are insensitive to the variation of the β -substituents.

For the S_NAr reactions of 1a-d, the rate constants correlated with σ values in the Hammett plot. In addition, the ρ values are 0.43-0.68 and show no clear trend with the change in base (Table V). The result can be explained with a specific base-general acid catalysis for the k_3 process (Scheme II).⁹ Since the oxygen atom of the oximate moiety is hydrogen bonded to $R_2NH_2^+$ in this transition state, little negative charge should be available for resonance stabilization by the β -aryl substituents. Moreover, the k_3 step is the dominant pathway of the rate-determining step as indicated by the large k_3/k_2 ratio.¹³ Therefore, it is reasonable to expect that the Hammett plot should correlate with σ values and exhibit small ρ values. Similar values are obtained for 2a-d, despite the 10⁵-fold difference in reactivity.¹ Furthermore, the values are very similar to 0.43 and 0.68 obtained for the reactions of the 1a and 2a with MeONa in MeOH, even though the rate-determining step changes to the first step in this base-solvent system.⁴ Thus, the effect of β -aryl substituent upon the S_NAr reactions appears relatively insensitive to the variation of the base, O-aryl substituent, and the base-solvent system.

Competition between E2 and S_NAr Reactions. The yields of S_NAr product for the reactions of 1a-d and 2a-d with R_2NH in MeCN are summarized in Tables VI and VII, respectively. The yield increased with base concentration, electron-withdrawing ability of O-aryl substituent, and the base strength. This result confirms our previous observation for the reactions of the unsubstituted compounds 1a and 2a, which has been interpreted with the rate equation, relative influence of the O-aryl substituent upon the E2 and S_NAr transition states, and the β values.¹

For reactions of 1a-d, the yield of S_NAr product decreased as the electron-withdrawing ability of the β -aryl substituent increased. The result can readily be explained with the different sensitivity of the E2 and S_NAr reactions to the variation of the substituents. The Hammett ρ values for the E2 and S_NAr processes are 1.0-1.3 and 0.43-0.68, respectively, indicating that the former is more sensitive to the variation of the β -aryl substituent. Therefore, the yield of S_NAr product should decrease with more electronwithdrawing β -aryl substituent. The greater sensitivity of the E2 reaction to the β -aryl substituent can be attributed to the relative distance between the substituent and the reaction site. Since the C_{β} -H bond is parallel to the β -aryl ring, the β -aryl substituent is expected to influence the E2 reaction primarily through inductive effect. In addition, the S_NAr reaction should also be influenced by the inductive effect of the substituent because the k_3 process is the predominant pathway of the rate-limiting step (vide supra). Therefore, the E2 reaction should be more sensitive to the electron-withdrawing ability of the substituent than the S_NAr reaction because the substituent is closer to the C_{β} -H bond than to the O-Ar bond.

In contrast, the yield of the S_NAr product for 2a-dremained nearly the same regardless of the nature of the β -aryl substituent. The relative insensitivity of the yield to the electron-withdrawing ability of the substituent apparently results from the similar ρ values for the E2 and S_NAr processes. The Hammett ρ values for the E2 and S_NAr reactions for 2a-d are in the range of 0.46–0.57 and 0.53–0.63, respectively (Tables II and V). Therefore, the yield for 2a-d should remain nearly constant for all substituents.

Experimental Section

(E)-O-Arylbenzaldoximes were prepared by reactions of (E)benzaldoximes with appropriate aryl halides.¹⁻⁴ The kinetic studies were carried out as previously reported.¹

Acknowledgment. This investigation was supported by grants from KOSEF-OCRC and Basic Science Institute Program, Korea Ministry of Education (1993).

⁽¹²⁾ Although k^8 is a function of base concentration, the k^8 value determined at given base concentration should reflect the relative rates of the S_NAr reactions. Therefore, the slope of log k^8 vs pK_a of the base could be taken as the susceptibility of the S_NAr rate to the base strength.¹

⁽¹³⁾ For reactions of 1a-d and 2a-d with pyrrolidine, the calculated k_3/k_2 values are in the range of $1-4 \times 10^2$ and $1-4 \times 10^3$, respectively. Since the partitioning of the k_2 and k_3 processes is determined by $k_3[R_2 NH]/k_2$ and $[R_2NH] = 1.00 \times 10^{-2}$ and 1.00×10^{-3} M, respectively, were used in the Hammett studies, the latter should be the dominant pathway.

Supplementary Material Available: Rate constants for E2 and S_NAr reactions of (E)-O-2,4-dinitrophenylbenzaldoxime (1) and (E)-O-picrylbenzaldoxime (2) with R_2NH in MeCN at 25.0 °C (11 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.